Presentation outline

- Introduction
- Component level ESD standards
- Automotive ESD standards
- System level ESD & beyond
- On-chip ESD protection design
- Summary
Introduction

• This is a presentation about ESD standards for electronic components for the Automotive Industry

• Automotive industry have high demanding requirements
 • High reliability
 • Safety regulations
 • Hostile environment
 • Low return rate requirement
 • Long life-span

• Semiconductor footprint for automotive is ever growing

• ESD is a key design parameter to quantify robustness
NXP supplies automotive industry

- Radio DSP & Audio, NFC
- Access & immobilizers
- In-vehicle networking
- (Solid State) Lighting
- ABS, engine control sensors
COMPONENT LEVEL
ESD STANDARDS
Two worlds of ESD

Component level
- Semiconductor parts
- Handling in ESD controlled environment
- High currents, low energy

System level
- Modules, system boards and complete products
- ESD uncontrolled environments
- Higher currents, higher but still low energy
Testing ESD susceptibility

- Standards:
 - Classification: Test results in pass/fail for a given level
 - Each standard covers a limited part or real-life ESD
 - To have reproducible results
 - Describe the waveform and test procedure

- In general, semiconductor components are qualified according these standards that address different situations:

 - **Human Body Model**
 - A person discharges to an IC

 - **Machine Model**
 - A tool discharges to an IC

 - **Charged Device Model**
 - A charged IC discharges to its environment

 - **System Level (IEC)**
 - A person discharges through a tool to equipment

Phase out of Machine Model

Motivation:
Observed failures for MM are strongly correlated to HBM results. They only occur at a lower stress voltage.

Therefore, MM yields no added value and only increases cost.

- “Classification testing” renamed to “Characterization”
- Notes:
 - “[..] Machine Model as described in ESD22-A115 should not be used as a requirement for integrated circuit ESD qualification.
 - Only HBM and CDM are the necessary”
- JEP172: “Discontinuing Use Of The Machine Model For Device ESD Qualification”
- ANSI/ESD S5.2 > STM5.2
 - ANSI standard S5.2 has been standardized as a test method

JESD22-115C (Nov 2010)

8. 4 November 2014
ESD Standard pulses compared

General pulse characteristics:
- High power
- Low energy
- Nano second time frame

2 kV HBM
Ip=1.3A
Tr~8 ns
Td~200 ns

1500 V
CDM
Ip=15A
Tr~100 ps
Td~1 ns

4 kV IEC
Ip=14A
Tr~200 ps
Td~100 ns
AUTOMOTIVE ESD STANDARDS
Automotive industry

- Demanding requirements
 - Hostile environment
 - Low return rate requirement
 - Long life-span
- … for niche market!
- The Automotive Electronics Council (AEC)
 - Issues common qualification specifications for electronics for the automotive industry
 - Lead standard: AEC-Q100 (Stress Qualification for IC’s)
 - ESD and Overstress
 - Life test
 - Originally established in by Ford, Chrysler and GM in early 90’s
 - NXP is Technical Committee Member since 2005
Anatomy of AEC-Q100 Rev G (ESD only)

- AEC-Q100 Rev G
 - May 2007

- Q100-002 Rev E
 - Aug 2013

- Q100-003 Rev E
 - July 2003

- Q100-011 Rev C1
 - March 2013

- No AEC standard

- ANSI/ESDA/JEDEC JS-001
 - Current: April 2012

- ANSI/ESDA STM5.1

- ANSI/ESDA S5.2
 - 2009

- ANSI/ESDA STM5.2
 - Current: 2012

- JESD22-A115C
 - Nov 2010

- JEP172

- ANSI/ESDA S5.3.1

- ANSI/ESDA/JEDEC JS-002
 - To be released (JESD22-C101)
Recent developments in AEC-Q100

- AEC-Q100 Rev H is to be released soon:
 - Ballot passed Sept/Oct 2014
 - MM standard is removed
 - Intention to follow ANSI/ESDA/Jedec JS-002 for CDM

- ANSI/ESDA/Jedec JS-002 (CDM)
 - Second joint standard between ESD Association and Jedec
 - Merge of JESD22-C101 and ANSI/ESD S5.3.1
 - Focus on backward compatibility
 - Change from voltage level defined to current level defined stress

<table>
<thead>
<tr>
<th>Organization</th>
<th>Previous step</th>
<th>Next step</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESDA</td>
<td>Accepted</td>
<td>Industry review</td>
</tr>
<tr>
<td>Jedec</td>
<td>Ballot passed</td>
<td>Approval by Board of Directors</td>
</tr>
</tbody>
</table>
SYSTEM LEVEL

ESD & BEYOND
System Level ESD

- No AEC standard because AEC is component level only
- Still, more and more customers require a component to PASS a system level requirements
- System level standard IEC-61000-4-2
- ANSI ESD SP 5.6 (Human Metal Model) for IC components

Ref [8]
Other standards

- ISO7637-2: Electrical disturbances from conduction and coupling
 - System level standard
 - Discharge / overvoltage due to change in inductive load on the wiring loom
 - Voltage spikes up to 112Volts, duration of \textbf{50us} (250x longer than HBM!)
 - No ESD test, but EOS test!

Ref [9]
ON-CHIP ESD PROTECTION
Design for ESD robustness

- Mask sets are expensive, therefore a first-time right is eminent!
- Development of an ESD protection strategy
 - Semiconductor process knowledge
 - What can go wrong (blow-up, melt, etc)?
 - How can we prevent that?
 - Create protection infrastructure
- CAD tools
 - Simulation methods (2d simulation and/or SPICE based simulation)
 - Design verification checks. Using Programmable Electrical Rule Checksets (PERC), critical circuit topologies may be identified
- Manual review
 - Of schematic
 - Of physical layout design
System-efficient ESD Design (SEED)

- Component level ESD does not correlate to system ESD pulses
- High HBM levels do not guarantee a ESD-safe system design, but may limit IO performance
- Understand which magnitude of stress actually arrives on the IO pin in a system application.
Semi-automatic circuit analysis

Not a real product. Illustration purpose only.
On-chip ESD simulation

Not a real product. Illustration purpose only.
Summary

- Because the Automotive industry has high demands, design for ESD is a significant effort.
- Overview of the AEC-Q100 standard is given.
- Some important (expected) changes:
 - Expected removal of Machine Model from AEC-Q100.
 - Alignment with the soon to be released JS-002 for CDM.
- For ESD robustness, engineering takes place on multiple levels:
 - Device engineering, strategy development, co-design and troubleshooting.
 - Usage of dedicated CAD tools.
- … to have a first-time right design cycle!
THANK YOU!

QUESTIONS?
References

1. ANSI ESDA/JEDEC JS-001, Electrostatic Discharge Sensitivity Testing - Human Body Model (HBM) - Component Level
2. ANSI ESD S5.3.1, Electrostatic Discharge Sensitivity Testing - Charged Device Model (CDM) - Component Level
3. Jede. JESD22-C101, Field-induced Charged-Device Model Test Method For Electrostatic-Discharge-Withstand Thresholds Of Microelectronic Components
4. ANSI ESD STM5.2, Electrostatic Discharge Sensitivity Testing - Machine Model (MM) - Component Level
5. Jede. JESD22-A115, Electrostatic Discharge (ESD) SENSITIVITY Testing, Machine Model (MM)
6. IEC61000-4-2 Electromagnetic Compatibility (EMC) - Part 4-2: Testing And Measurement Techniques - Electrostatic Discharge Immunity Test
7. ANSI ESD SP5.6, Human Metal Model (HMM) - Component Level
8. ESDA Industry Council on ESD Target Levels, White Paper 3: System Level ESD
Useful links

- ESD Association
 www.esda.org

- Jedec
 www.jedec.org

- American National Standards Institute
 www.ansi.org

- Automotive Electronics Council
 www.aecouncil.com

- NXP
 www.nxp.com